Quantitative determination of the proportion of microtubule polymer present during the mitosis-interphase transition.

نویسندگان

  • Y Zhai
  • G G Borisy
چکیده

We have developed a new method for determining levels of tubulin polymer, based on quantitative fluorescence detection of x-rhodamine tubulin microinjected into living cells and we have applied this method to analysis of the mitosis-interphase transition. LLC-PK cells in interphase and mitosis were microinjected, then cooled and rewarmed to drive tubulin incorporation. Total tubulin fluorescence in individual, living cells was quantified using a cooled, scientific grade CCD image sensor. Cells were then washed and lysed into a microtubule-stabilizing buffer to extract the soluble pool. Total tubulin polymer fluorescence was determined for the extracted cells in the same way as for living cells. Fluorescence images were corrected by flat-fielding and background subtraction. The ratio of extracted cell fluorescence/living cell fluorescence for individual cells, was taken as the proportion of tubulin as polymer. Cells in M-phase, G1 and random interphase were analyzed. G1 cells had almost the same proportion as random interphase cells. Mitotic cells gave a value of 90 +/- 5% of G1 cells at 37 degrees C. Within M-phase, levels of tubulin as polymer in metaphase and early anaphase were not significantly different. In contrast to the general expectation of microtubule depolymerization at anaphase onset, these results indicate that as cells exit mitosis, the overall proportion of tubulin as polymer does not change dramatically even though the mitotic spindle disassembles. We conclude that the mitosis-interphase transition is accompanied by a redistribution of tubulin at an essentially constant polymer level. Therefore, a global shift to depolymerization conditions is not the driving force for anaphase chromosome movement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microtubule dynamics at the G2/M transition: abrupt breakdown of cytoplasmic microtubules at nuclear envelope breakdown and implications for spindle morphogenesis

We recently developed a direct fluorescence ratio assay (Zhai, Y., and G.G. Borisy. 1994. J. Cell Sci. 107:881-890) to quantify microtubule (MT) polymer in order to determine if net MT depolymerization occurred upon anaphase onset as the spindle was disassembled. Our results showed no net decrease in polymer, indicating that the disassembly of kinetochore MTs was balanced by assembly of midbody...

متن کامل

Pap1+ confers microtubule damage resistance to mut2a, an extragenic suppressor of the rad26:4A allele in S. pombe.

The DNA structure checkpoint protein Rad26ATRIP is also required for an interphase microtubule damage response. This checkpoint delays spindle pole body separation and entry into mitosis following treatment of cells with microtubule poisons. This checkpoint requires cytoplasmic Rad26ATRIP, which is compromised by the rad26:4A allele that inhibits cytoplasmic accum...

متن کامل

Cell Cycle Regulation of Microtubule Interactomes: Multi-layered Regulation Is Critical for the Interphase/Mitosis Transition*

Microtubules dramatically change their dynamics and organization at the entry into mitosis. Although this change is mediated by microtubule-associated proteins (MAPs), how MAPs themselves are regulated is not well understood. Here we used an integrated multi-level approach to establish the framework and biological significance of MAP regulation critical for the interphase/mitosis transition. Fi...

متن کامل

Suppression of microtubule dynamic instability and turnover in MCF7 breast cancer cells by sulforaphane.

Sulforaphane (SFN), a prominent isothiocyanate present in cruciferous vegetables, is believed to be responsible along with other isothiocyanates for the cancer preventive activity of such vegetables. SFN arrests mitosis, possibly by affecting spindle microtubule function. A critical property of microtubules is their rapid and time-sensitive growth and shortening dynamics (dynamic instability), ...

متن کامل

Preclinical Development Nakiterpiosin Targets Tubulin and Triggers Mitotic Catastrophe in Human Cancer Cells

Agents that interfere with mitotic progression by perturbing microtubule dynamics are commonly used for cancer chemotherapy. Here, we identify nakiterpiosin as a novel antimitotic drug that targets microtubules. Nakiterpiosin induces mitotic arrest and triggers mitotic catastrophe in human cancer cells by impairing bipolar spindle assembly. At higher concentration, it alters the interphase micr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 107 ( Pt 4)  شماره 

صفحات  -

تاریخ انتشار 1994